A Texture-based Method for Detecting Moving Objects

نویسندگان

  • Marko Heikkilä
  • Matti Pietikäinen
  • Janne Heikkilä
چکیده

The detection of moving objects from video frames plays an important and often very critical role in different kinds of machine vision applications including human detection and tracking, traffic monitoring, humanmachine interfaces and military applications, since it usually is one of the first phases in a system architecture. A common way to detect moving objects is background subtraction. In background subtraction, moving objects are detected by comparing each video frame against an existing model of the scene background. In this paper, we propose a novel block-based algorithm for background subtraction. The algorithm is based on the Local Binary Pattern (LBP) texture measure. Each image block is modelled as a group of weighted adaptive LBP histograms. The algorithm operates in real-time under the assumption of a stationary camera with fixed focal length. It can adapt to inherent changes in scene background and can also handle multimodal backgrounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using spatiotemporal blocks to reduce the uncertainty in detecting and tracking moving objects in video

We present a novel method for detecting moving objects in videos. The method represents videos using spatiotemporal blocks instead of pixels. Dimensionality reduction is performed to obtain a compact representation of each block's values. The block vectors provide a joint representation of texture and motion patterns. The motion detection and tracking experiments demonstrate that our method alt...

متن کامل

A Novel Method for Tracking Moving Objects using Block-Based Similarity

Extracting and tracking active objects are two major issues in surveillance and monitoring applications such as nuclear reactors, mine security, and traffic controllers. In this paper, a block-based similarity algorithm is proposed in order to detect and track objects in the successive frames. We define similarity and cost functions based on the features of the blocks, leading to less computati...

متن کامل

Statistical Background Modeling Based on Velocity and Orientation of Moving Objects

Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...

متن کامل

Recent Trends in Machine Learning for Background Modeling and Detecting Moving Objects

Background modeling is often used in the context of moving objects detection from static cameras. Numerous methods have been developed over the recent years and the most used are the statistical ones. This paper describes the current state-of-art in background modeling methods for moving object detection. We also propose a method for background modeling based on texture features and self organi...

متن کامل

Fusion of Texture Variation and On-Line Color Sampling for Moving Object Detection Under Varying Chromatic Illumination

In this paper, a novel approach to non-rigid moving object detection under varying chromatic illumination is proposed. Different from most algorithms that utilize color information, the assumption of smooth or global change of illumination is no longer needed. Our method is based on the observation that the color appearance of objects may alter as the change of light intensity and color, but th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004